
2018 15th International ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology (ISCISC)

August 28-29, 2018; Shahid Rajaee Teacher Training University - Tehran, Iran

978-1-5386-7582-3/18/$31.00 ©2018 IEEE

BotcoinTrap: Detection of Bitcoin Miner Botnet

Using Host Based Approach

Atefeh Zareh

Department of Computer Engineering and Information

Technology

Amirkabir University of Technology

Tehran, Iran
zareh@aut.ac.ir

Hamid Reza Shahriari

Department of Computer Engineering and Information

Technology

Amirkabir University of Technology

Tehran, Iran
shahriari@aut.ac.ir

Abstract—Bitcoin is one of the most successful

cryptocurrencies. Many people invest money on creating new

Bitcoins because of Bitcoin’s market increase. They actually

buy hardware and power to participate in Bitcoin mining. The

market value of Bitcoin has also absorbed cybercriminals.

They steal the process cycles from victims’ machines and use

them in mining activities by malware programs. There have

been several security reports about these types of malicious

activities. Although there are methods to detect botnets, to the

best of our knowledge, none of non-commercial and published

papers present detection method for these types. In this paper,

we present Botcointrap, a novel approach to identify Bitcoin

miner botnets (called Botcoin) based on dynamic analysis of

executable binary files. This method benefits from a parameter

value that all Botcoins must use across their computations and

detect them in the lowest level of execution; therefore, our

method can be used to overcome weaknesses of many other

approaches. Our evaluation shows that the proposed approach

efficiently identifies all simulated Botcoins.

Keywords—Bitcoin, Blockchain, Bitcoin Mining, Miner,

Malware, Botnet, Botcoin, Dynamic analysis, BotcoinTrap

I. INTRODUCTION

Botnet is a tool to commit online crimes and is the
greatest threat to internet infrastructure. Botnet is a network
of compromised end-user PCs (bots) infected with a malware
(malicious software), and are controlled by a Botmaster.
This network of victim’s machines with a C&C (command
and control) channel provides a complete toolset for different
illegal activities. The goal of this network is financial gain
for its botmaster with a low risk of being caught. These
activities are very diverse, containing DDoS attack, pay-per-
install, fake anti-virus, spam, click fraud, harvesting sensitive
information (such as account login information and credit
card data), and Bitcoin mining [1].

Botmaster decides which activity set will execute on the
victim’s machine based on which time table. Botmaster then
enforces all plans to bots by command and control channel.
Botmaster decisions obviously are based on maximizing the
outcome and minimizing the risk of botnet detection.

Bitcoin mining has so many appealing features for
botmasters to involve. We call these types of botnets that
mine Bitcoin as Botcoin [2]. Despite of some other activities
(for example, sending spam), mining requires little botmaster
investment. Bitcoin’s market increase is another very strong
motivation for botmasters to make use of Bitcoin mining.
Because of state-space search essential of mining, this

activity is a marvelous candidate to distribute between bots.
On the other hand, Bitcoin mining is a fully computational
process and using mining solely on the victim’s machine
increases the risk of detection. Considering all these things,
botmaster plans the bots.

Numerous technical reports and tools have emerged for
botnet detection until now. As far as we know, none of these
methods unveil all details of the botnet at once. All detection
methods address a part of the big jigsaw puzzle. Botnet
detection is classified into different aspects; bot detection,
C&C detection and botmaster detection [3].

In this paper, we present a novel approach to detect
Bitcoin miner bots. We show that several botnet detection
methods can be bypassed by miner malware. We introduce a
different behavior of Botcoins that is used to detect this type
of malware. This method detects malicious samples
effectively in our designed experiments.

The rest of this paper is organized as follows. Section II
surveys related work. Section III provides the technical
background on Bitcoin, Bitcoin mining and blockchain
necessary of the remainder of the paper. In Section IV, we
describe our approach, called BotcoinTrap. We present our
results in Section V, while Section VI concludes this paper.

II. RELATED WORK

Related researches to our approach are considered in two
main areas. The first investigates some botnet detection
techniques that can be used in general for all types of botnets
and is not for a specific type of botnet [3], [4], [5], [6]. We
study the limitations and issues of all these methods to cover
the majority of them in our approach. We present the
advantage of our method comparing with these general
methods in the remaining of the paper.

The second area that is related to our investigation
contains some researches about Bitcoin miner malware in
several aspects. Although to the best of our knowledge,
none of non-commercial and published researches address
this new malicious behavior to detect botnets, some studies
have been done around this issue. Huang et al. Focus on
dynamics of Bitcoin mining malware and conclude the
count of Bitcoins that a number of mining botnets have
made [1]. Technical details of ZeroAccess botnet are
explored and one of plugins that this botnet download to
perform on the victim’s machine is Bitcoin mining plugin
[7]. Also, Plohmann and Gerhards-Padilla characterize
Miner Botnet in technical level [8]. Güring and Grigg have

an investigation to show a threat of Botcoins in the
economic perspective, and it shows the importance of
detecting and stopping these types of defective malware [9].

III. BACKGROUND

Nakamoto (a pseudonym) unveiled a system for an
electronic money (named Bitcoin) and its electronic
transactions without relying on trust [10]. Bitcoin is a crypto
currency based on p2p network. There is no need for a
central authority to create money, validate and perform
transactions, recording balances and any other related
activities.

 Creating new Bitcoins, validating new transactions and
persisting valid transactions in the system are done with
Bitcoin miners. A miner is any person or group of people
that distribute in a specific activity in Bitcoin network, called
Bitcoin mining. A miner records transactions in a global
ledger named the Bitcoin blockchain. The blockchain is a
distributed data structure that allows all peers to access all
transactions in the Bitcoin network and consequently, know
everybody’s Bitcoin balance.

Everybody can have several accounts on Bitcoin
network. Each account has a pair of public and private key.
Each person is known with their public key and could sign
with his or her private key and hence, the privacy of senders
and receivers in a transaction is protected. All transactions
are signed with the private key of the sender of Bitcoin and
then are broadcasted on Bitcoin network.

Miners gather some recent transactions and validate them
according to the Bitcoin standards and sender’s balance. A
Miner puts valid transactions in a block structure and also
puts the previous block hash in the block structure to chain
this block to the latest previous block. Then the miner has to
perform a hard-mathematical computation in this block to
find a proper 32-bit data (called nonce) that is matched for
this block.

This computation is based on the SHA-256 hashing
algorithm. In fact, each miner must find a proper random
number of nonce such that putting this number in its place in
working block, results a proper SHA-256 hash value of that
block. The condition of the hash's suitability is a certain
count of zero bits at the beginning of it. This count is the
difficulty factor of block mining and is determined by
Bitcoin network dynamically.

Each miner broadcasts the whole block to everyone over
the p2p Bitcoin network after finding the proper nonce.
Other miners check the validity of this received block as
soon as receiving the last mined block. Validating a block
means that the hash of it must be less than a threshold. If the
received block is valid, the miners stop working with their
current block because the previous block hash is not valid
anymore and a newer one exists. They update their working
block and start to find proper nonce again in the new
underwork block.

Only the blocks in the longest blockchain of Bitcoin are
valid. Each mined block contains some new created Bitcoins
that are owned with its miner. This prize and also
transaction’s fee is the miner’s incentive to participate in the
Bitcoin network to support this network by creating new
Bitcoins, validating and recording transactions in the
blockchain.

TABLE I. FIELDS OF A BITCOIN BLOCK HEADER

Field Purpose Update time
Size

(Byte)

Version
The version of this

block

When the miner

software will be

updated

4

Previous

block

hash

Hash of previous

block

When a new block is

broadcasted on

Bitcoin network

32

Merkel

Root

hash

Hash of block

transactions

Adding one accepted

transaction in a block
32

Time

Current timestamp

(in second) after

1970-01-01T00:00

UTC

After one second 4

Bits

Amount of current

proof of work

hardship

Adjusting hardship of

proof of work
4

Nonce

32-bit random

number such that

meet the hash criteria

of the block

Can be different for

every block
4

Because of high difficulty of mining, people participate
in some special groups (mining pools) and share their
process power and then the resulted income. This is where a
botnet comes in. A botnet is a mining pool and the bots are
the members of this pool. Botmaster distributes the
calculation between bots and expects each bot to send back
the result after finding it. Table I shows all fields of a Bitcoin
block header.

IV. BOTCOINTRAP

In this section, we propose a method for detecting
Botcoin. This method is based on dynamic analysis of the
instruction trace and can be applied to any suspicious
executable binary files. In this method, we found a constant
parameter value that all of Botcoins must use across their
malicious computations. We detect this malware in the
lowest level of execution (assembly language level).

Botnets have a life cycle of seven steps: spread and
infection, secondary injection, hiding and securing,
rallying/bootstrapping, command and control, attack, remove
and release. This kind of malware that we study in this
research does a straightforward and repetitive functionality
on a victim’s machine in the attack phase. This functionality
despite of other malware activities in other phases has
limited variety; hence Botcoin detection by this feature has
stronger accuracy.

The purpose of Bitcoin Miner is to find a proper Nonce
for the Bitcoin block header such that the result of SHA-256
in the block header starts with a predefined count of zeros.
The mining process is essentially a state-space search, and
there are no tricky methods to find a proper nonce by less
computation.

In the whole process of Bitcoin Mining, the current
Bitcoin block header is the most important data for detecting
Botcoins. This data is too big to locate in CPU registers and
malware has to read this data from memory repeatedly to
calculate the hash of the block. This repeated reading from
memory helps us to trap the malware. In the next section, we
describe block header in more details

A. Forecasting specific part of the next Bitcoin Block

header

We want to forecast maximum data content that Botcoins
provide in a victim’s machine and use them in digesting
function. Table I shows all fields of a Bitcoin block header.
We use first two fields of a block header for this purpose,
and shows in the remaining of this section that both of them
have acceptable change rate.

Fig. 1. Changes in the block version of the Bitcoin blockchain [11]

Fig. 1 is a stacked area graph, illustrating the number of
blocks over time. Each color represents a Bitcoin blockchain
version (First field of Table I) and the current block version
value is 536870912. Based on Fig. 1, all miners rapidly
update their block version to the most recent released version
of block version.

The motivation of miners to this fast update is that they
want their mined blocks to be accepted by other miners and
can achieve their financial income from their mining activity
as a result. As mentioned in Bitcoin Improvement Proposals,
Miners are strongly recommended to upgrade to the newest
version of blocks. When 95% of the past 1000 blocks have
the newest version, blocks with older versions become
orphaned and invalid entirely [12] [13, p. 0062].

Second field in Table I is ‘previous block hash’ that
changes almost for every new released block. Bitcoin
network adjusts the difficulty of creating new Bitcoins to
guarantee the average ten minutes time for each new block
release. All new blocks are announced on Bitcoin network,
and thus we access to the previous block hash by listening to
Bitcoin network. Because of the low change rate of previous
block hash, we utilize this value in our detection approach.

Other fields in Table I are not the focus of this paper
because their values are specified by each miner and are not
predictable at all and we cannot exploit them for detecting
the Botcoins. For this reason, we use only the first two fields
of the block header in remaining of research (version and
previous block hash), first one from Bitcoin community and
the second one from the Bitcoin P2P network and they are
overall 36 bytes. In the remaining of the paper, we called
these 36 bytes data as common header data.

One advantage of this novel approach for malware
detection is that these 36 bytes are common for all Blocks in
any time that is mined either by legal or illegal miners

(Botcoins). This data is completely predictable and can be a
tricky key to reveal this malicious behavior.

B. The Architecture of BotcoinTrap

In the previous section, we showed that it is possible to
predict 36 bytes of Botcoin data. In this section, we use this
data to detect Botcoin. 36 bytes of data are too large to store
in CPU data registers in regular common CPU architectures,
and CPU cannot operate SHA-256 function by remaining
CPU registers. For this reason, Botcoin has to read this data
from memory repeatedly to calculate the hash of a block.
This repeated reading from memory is the basis of our
method.

We can assume at least two architectures for our Botcoin
detector method according to time of detection. One of them
is called synchronous and the other is asynchronous
architecture. In synchronous architecture, we instrument the
executable file and monitor its memory read accesses and
simultaneously calculate the common header data and
compare these two data and then notify the client of
detecting Botcoin by meaningful repeated equal results.

The biggest disadvantage of synchronous architecture in
this case is that the execution of suspicious executable file
become too slow and it can effect on the origin behavior of
the Botcoin.

Analysis Enviroment

Monitoring

Listener DebuggerInstrumenting

Detector
M

em
o
ry

re
ad

ac
ce

ss
es

B
lo

ck
s

Bitcoin Network
Suspicious

Executable

Fig. 2. Asynchronous architecture of Botcoin detector

As a consequence of synchronous architecture
drawbacks, we immediately propose the asynchronous
architecture. The asynchronous architecture is illustrated in
Fig. 2. The main difference between asynchronous
architecture and previous one is that the listener component
logs the hashes of the new blocks instead of notifying them
to instrumented debugger. Instrumented debugger also logs
all memory read accesses without any extra process on them.
Third component named detector receives these two logs and
decides based on them about malicious behavior of mining.
The cause of this architecture naming as asynchronous is
according to executing the suspicious executable and
detecting process asynchronously. In the remaining of this
article we only describe asynchronous architecture in detail.

C. Sequence of process

Fig. 3. The sequence diagram of the asynchronous detector

The sequence diagram of asynchronous approach is
illustrated in Fig. 3. The three main components of monitor,
listener and detector in Fig. 3 are shown as three lifelines in
Fig. 3. One more lifeline named integrator is exists in
sequence diagram. This component has responsibility for
integrating all other components and achieves the desired
result. Integrator may be an operator or a software
component.

Integrator component starts the listener component.
Listener component listens to the Bitcoin network and
records each new broadcasted block with timestamp in a file
named Blocks.log until integrator stop this component. Then
integrator sends command to monitor component to
instrument a given suspicious executable file or instrument a
given process. After a while that is defined by the integrator,
the monitor stops its monitoring and then returns the result
file called ReadAccess.log to the integrator. This file
contains all memory read accesses that suspicious application
has in this period of time. Integrator sends these mentioned
files to detector component and receives the detection result.
Integrator can repeat these processes as wish.

D. Detection Algorithm

In this section, we describe the internal logic of detector
component. Our detection algorithm has inspired from The
Venus Flytrap. It is a plant that catches its prey with a special
trapping leaf. Each of these special leaves consists of a pair
of fatal lobes hinged at the midrib. Each lobe has tree
hairlike trichomes on the upper surface of it. This plant snap
lobes shut when is stimulated with a prey. It is vital for the
plant to detect the prey correctly. Closing the lobes without
any real prey is costly and on the other hand, if the plant
doesn’t detect the existence of prey on the trap structure, it
loses the potential food. This plant uses the most heuristic
method to survive. When an insect or spider crawling along
the leaf, contacts a hair, the trap prepares to close, snapping
shut only if another contact occurs within approximately
twenty seconds of the first strike.

/*

Data structures:

blocksFile (time, hash)

ReadFile (time, count, content)

*/

BlackList = contains 36 first parts of the current

Bitcoin block

main (){

 ReadFile = getMonitorLog()

 BlockFile = getListenerLog()

 Update BlackList with getNextLine of readLine

 detect()

}

detect(){

 latestHashOccurence = null

 while(is not end of readFile){

 l1 = getNextHashLine(readFile)

 if (l1 is near enough to latestHashOccurence

(M)){

 Alarm mining activity and do any necessary

action and exit

 }else{

 latestHashOccurence = l1 // forgot previous

latestHashOccurence

 }

 }

 Notify end of detection without mining activity

detection

}

lineNumber getNextHashLine(readFile){

 /*

 * current Bitcoin Block as black content,

 * and any line of ReadFile that is equal

 * to each of these 36, as BlackLine.

 */

 latestBlackLine = null

 while(it is not end of ReadFile){

 content = getNextLine (ReadFile)

 if (isInBlackList(content)){

 read N-1 next lines

 if (these N bytes cover black list){

 return content line as hash occurrence.

 }

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Fig. 4. Detector algorithm

As we see in the previous section, detector receives two
series of logs from listener and monitoring component and
has the responsibility of detecting mining activity. These two
types of logs have a common timestamp data, that is used to
join these two files. The pseudocode of detector is presented
in Fig. 4.

The detector component receives one file from the
monitoring component (named readFile) and another file
from the listener component (named blockLog). ReadFile
contains every memory read access of suspicious file with
the format of (time, count, content) and blockLog containing
headers hashes of broadcasted blocks from the Bitcoin
network after executing the detector and has a simple
structure of (time, hash).

36 bytes of data that all miners containing Botcoins work
with repeatedly is known data. We investigate the content of
memory read access file and if these 36 bytes of data are in
an N-sized data of this file, it is announced as a hash
occurrence. Hash occurrence is like hitting one of hairlike
trichomes in the case of Venus Flytrap.

Then we define an M-sized window of read access data,
and expect to see second hash occurrence event in the same
window. If two hash occurrences are done on an M-sized
window, it is interpreted as a Bitcoin mining occurrence and
otherwise we reset the state of the detector as waiting for the

first hash occurrence. M-sized window is like the timer in
case of Venus Flytrap.

E. BotcoinTrap Implementation

We implement the asynchronous architecture of Botcoin
detector .In this section, we describe the details of the
implementation containing the tools that are utilized in
implementing, programming languages that are used in each
part of project, user interfaces of the program and the simple
manual of it and the necessary command lines.

Monitoring component is utilized PIN for debugging the
suspicious executable file or process. PIN is a dynamic
binary instrumentation framework and hence, there is no
need to recompile the application [14]. We implement the
specific instrument in C++ programming language for
recording all memory read accesses in a file and providing
the output of Monitoring component.

Fig. 5. Listener User Interface

Listener component is developed in Java language. This
component listens to Bitcoin network and records the hash of
all broadcasted blocks in a file. We show the user interface
of this component in Fig. 5. The client of this software must
enter the count of desired peers in the box on top of the form
and then click on the start button. After clicking this button,
the current time date is written in the box next to the button
and all boxes and the button are disabled. All rows in the
form show the peers that are connected to listener
component. The whole Bitcoin blocks after that time is
recorded in listener file.

Detector component receives the output files of
monitoring and listener components and detect that if the
suspicious application is malicious or not based on the
algorithm that is described in the previous section.

V. EVALUATION

Because of our limitation in accessing real Botcoin
malware, we develop some simulated Botcoins. We evaluate
this proposed method experimentally by these simulated
Botcoins. The Bitcoin miner malware utilizes the real Bitcoin
mining software as a core component of mining process and
then wrap the core, by other software to communicate with

C&C and provide botmaster parameters [2]. As a consequent
of mentioned fact, we simulate several Botcoins with
different parameters of the core miner to cover a wide range
of real Botcoins functionalities.

We benefit DiabloMiner [15] in Java language that works
based on GPU processing and BfgMiner [16] in C language
that mines in both CPU and GPU. We cover various source
languages of miners (Java and C) in our test cases. Also
various kinds of processor (CPU and GPU) are considered in
our test. Mining standalone or working as a member of a
pool is another variation that we considered in the
experiment.

Considering all of these criteria for diversifying, we
create a 6-sized data set of Botcoin executable binary files.
Then we consider 10 benign executable files in our data set.
We examine the developed software and consequently the
proposed approach with the data set.

As we expect due to the strictness of the method, all
Botcoins were found, and because of the unlikely
observation of this memory access pattern, no other software
was caught up. This experiment led to zero false positive and
zero false negative in the test set.

As far as we know there are no published papers to
represent a methodology to detect Botcoins. For this reason,
we cannot compare our results with previous ones and
cannot have a benchmark with them. In this reason we also
present a comparison between our approach with some other
general botnet detection methods in the context of detecting
Botcoin:

Dynamic analysis of OS APIs: All Bitcoin miners
containing Botcoins must use encryption functions to
perform their mining functions. Some of them use OS APIs
to calculate this encryption functionality, and in these cases,
we can hook some proper OS APIs to help malicious
behavior detection. Miners can easily implement their
desired functions independent of the OS, and therefore these
types of detections can easily be bypassed.

Static analysis of crypto functions: Another candidate
solution for detecting Botcoins is a static analysis of
cryptographic functions. In this method, we can find the
targeted function in any binary executable file. All static
analysis based detection approaches can be bypassed with
some methods such as obfuscation [17].

Dynamic analysis of network traffic: Botcoins can
receive commands in a wide variety of protocols. Some of
them are well known and can be detected, but there is no
force to use them and a bot can use any desired protocol. In
the worst scenario, the malware uses a customized, secure
encrypted channel to communicate information with C&C
server. Communicating with well-known mining pools is
also not helpful to detect Botcoin because Botcoins can use
proxies to hide their real destination IPs. As a consequence
of this variety, network traffic analysis based approaches
have several problems in detecting Botcoins.

TABLE II. COMPARISON WITH OTHER METHODS

Approaches

Not
using

the OS
APIs for
hashing

Self-
Modifying
code (for
example,
Packer)

Obfusca
tion

Using
Encrypted

C&C
Protocol

Dynamic

analysis of

OS APIs

No No No
Don not

care

Static

analysis of

crypto

functions

Yes No No
Don not

care

Dynamic

analysis of

method calls

No Yes Yes
Don not

care

Dynamic

analysis of

network

traffic

Don not

care
Yes Yes No

Botcoin Trap Yes Yes Yes Yes

VI. CONCLUSION

This paper is the first study on Bitcoin miner botnet
detection techniques. Although there are some researches on
Botcoin, none of them has the concern of giving some novel
techniques to find them based on this malicious behavior.
This technique is host based and is based on dynamic
analysis of a binary executable file or its process.

This technique overcomes with a variety of limitations in
network level, such as C&C channel encryption, and also
static code solutions such as code obfuscation. Because this
technique is done at assembly level of mining activity then
can bypass some techniques that a usually malware utilize to
hide its malicious activities. The competition between
Botcointrap and other methods is presented in Table II. This
method is evaluated by a set of executable binary files,
containing simulated Botcoins and some other benign
executable binary files. We prove that it has an excellent
accuracy about in our experiment.

REFERENCES

[1] D. Y. Huang et al., “Botcoin: Monetizing Stolen Cycles.,” in NDSS,

2014.
[2] B. Krebs, “Botcoin: Bitcoin Mining by Botnet.” [Online]. Available:

http://krebsonsecurity.com/2013/07/botcoin-bitcoin-mining-by-

botnet/. [Accessed: 18-May-2018].
[3] S. Khattak, N. R. Ramay, K. R. Khan, A. Syed, S. A. Khayam, and

others, “A taxonomy of botnet behavior, detection, and defense,”

Commun. Surv. Tutor. IEEE, vol. 16, no. 2, pp. 898–924, 2014.
[4] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on

automated dynamic malware-analysis techniques and tools,” ACM

Comput. Surv. CSUR, vol. 44, no. 2, p. 6, 2012.
[5] D. Dagon, G. Gu, C. P. Lee, and W. Lee, “A taxonomy of botnet

structures,” in Computer Security Applications Conference, 2007.

ACSAC 2007. Twenty-Third Annual, 2007, pp. 325–339.
[6] E. Khoshhalpour and H. R. Shahriari, “BotRevealer: Behavioral

Detection of Botnets based on Botnet Life-cycle,” ISC Int. J. Inf.

Secur., vol. 10, no. 1, pp. 55–61, 2018.
[7] J. Wyke, “The ZeroAccess botnet–Mining and fraud for massive

financial gain,” Sophos Tech. Pap., 2012.

[8] D. Plohmann and E. Gerhards-Padilla, “Case study of the miner
botnet,” in Cyber Conflict (CYCON), 2012 4th International

Conference on, 2012, pp. 1–16.

[9] P. Güring and I. Grigg, “Bitcoin & Gresham’s Law-the economic
inevitability of Collapse,” October–December Httpiang

OrgpapersBitcoinBreachesGreshamsLaw Pdf, 2011.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Consulted, vol. 1, p. 2012, 2008.

[11] “Blockchain blocks version.” [Online]. Available:

https://data.bitcoinity.org/bitcoin/block_version/all?c=block_version
&r=week&t=a. [Accessed: 18-May-2018].

[12] “bips: Bitcoin Improvement Proposals-bip0034,” 12-Oct-2017.

[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0034.mediawiki. [Accessed: 12-Oct-2017].

[13] “bips: Bitcoin Improvement Proposals - bip0062,” 12-Oct-2017.

[Online]. Available: https://github.com/bitcoin/bips/blob/master/bip-
0062.mediawiki. [Accessed: 12-Oct-2017].

[14] C.-K. Luk et al., “Pin: building customized program analysis tools

with dynamic instrumentation,” in ACM Sigplan Notices, 2005, vol.
40, pp. 190–200.

[15] P. McFarland, DiabloMiner: OpenCL miner for Bitcoin. 2018.

[16] “BFGMiner - a modular ASIC/FPGA Bitcoin miner.” [Online].
Available: http://bfgminer.org/. [Accessed: 22-Mar-2018].

[17] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for

malware detection,” in Computer security applications conference,
2007. ACSAC 2007. Twenty-third annual, 2007, pp. 421–430.

